
J Math Chem (2009) 45:372–385
DOI 10.1007/s10910-008-9412-5

ORIGINAL PAPER

Interconnection networks for parallel molecular
dynamics simulation based on hamiltonian cubic
symmetric topology

Klavdija Kutnar · Urban Borštnik ·
Dragan Marušič · Dušanka Janežič

Published online: 31 July 2008
© Springer Science+Business Media, LLC 2008

Abstract A class of interconnection networks for efficient parallel MD simulations
based on hamiltonian cubic symmetric graphs is presented. The cubic symmetric
graphs have many desirable properties as interconnection networks since they have a
low degree and are vertex- and edge-transitive. We present a method for scheduling
collective communication routines that are used in parallel MD and are based on the
property that the graphs in question have a Hamilton cycle, that is, a cycle going
through all vertices of the graph. Analyzing these communication routines shows
that hamiltonian cubic symmetric graphs of small diameter are good candidates for
a topology that gives rise to an interconnection network with excellent properties,
allowing faster communication and thus speeding up parallel MD simulation.

Keywords Cubic symmetric graphs · Interconnection networks · Communication
scheduling

1 Introductory remarks

Many current parallel computers for parallel computation, including MD simulation,
use a variety of interconnection network topologies. The prevailing interconnection
for Beowulf-type personal computer clusters is a network switch [1], which is based
on a full graph, but the number of processor pairs that can concurrently communicate

K. Kutnar · D. Marušič
University of Primorska, FAMNIT, Glagoljaška 8, 6000 Koper, Slovenia

U. Borštnik · D. Janežič (B)
National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
e-mail: dusa@cmm.ki.si

D. Marušič
IMFM, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia

123

J Math Chem (2009) 45:372–385 373

is limited. Designing computer interconnection networks based on graph theory gives
more efficient networks [2,3]. Some such networks are 2-dimensional meshes and tori
[4–6], hypercubes [7,8], and others [9,10]. We have therefore decided to determine a
class of interconnection networks that is tailored for parallel MD simulation, and that
is suitable for a wide range of the number of processors.

Parallelization is an effective technique for speeding up MD simulations [11–14].
In parallel MD, the calculations are parallelized among many processors so that every
processor performs only a part of the calculations. Ideally, using P parallel processors
would result in a theoretical P-times speedup: the same calculation would be P-times
as fast as on a single processor; however, mostly due to the communication required
among processors, the speedup is less than P and the parallel efficiency is therefore
less than 100%. Reducing the communication time increases the efficiency of parallel
computation [15].

The design of a computer interconnection network patterned on the communi-
cation requirements of parallel processors leads to a reduced communication time
[7,13,16]. To model computer interconnection networks with graphs topologies, the
following correspondences are used: (1) Graph vertices model computer processors;
and (2) Graph edges model connections between individual processors. In the design
of interconnection networks we want to have a large number of processors without
requiring a large number of connections at a single processor or incurring long delays
in communication from one processor to another [17]. A desirable extra property of
interconnection networks is that they should appear identical from any processor. This
means that the graphs which describe interconnection networks should be vertex-
transitive. In particular, the topologies considered in this paper are the hamiltonian
cubic symmetric graphs from the Foster census [18,19] (for the definition see Sect. 2).
It turns out that interconnection networks with such topologies have many attractive
properties, such as a high degree of regularity, symmetry, and efficient communication
of derived networks.

Due to practical limitations of computer hardware, the number of connections at
a single processor should be as small as possible. Interconnection networks that have
three connections at each processor seem to be a good choice. We will give a schedule
of a communication (e.g., broadcasting) between processors in the interconnection
network with a hamiltonian cubic symmetric topology. This schedule for broadcasting
is based on the property that the graphs in question have a Hamilton cycle, that is, a
cycle going through all vertices of the graph. In particular, we will use the fact that
every hamiltonian cubic symmetric graph can be presented with the so-called LCF
code [20]. Using this schedule we will then show that hamiltonian cubic symmetric
graphs of small diameter are good candidates for a topology that gives rise to an
interconnection network with desirable properties.

In this paper we present a class of interconnection networks for parallel MD
simulations based on cubic symmetric graphs possessing a Hamilton cycle. In Sect. 2
we introduce the cubic symmetric graphs on which the interconnection networks are
based. In Sect. 3 we present the communication requirements for parallel molecu-
lar dynamics simulations and present an algorithm to schedule parallel MD com-
munication transfers on the interconnection networks based on the cubic symmetric
graphs. In Sect. 4 we present the modeled communication requirements of parallel MD

123

374 J Math Chem (2009) 45:372–385

simulations on the studied interconnection networks and compare them to standard
interconnection networks.

2 Cubic symmetric graphs

In this section we introduce cubic symmetric graphs which will be used throughout
this paper for interconnection networks for parallel molecular dynamics simulations.
By a graph we mean an undirected graph without loops or multiple edges. All graphs
are assumed to be connected. For the graph theoretic terminology not defined here we
refer the reader to the literature [21].

For adjacent vertices u and v in X , we write u ∼ v and denote the corresponding
edge by uv. A graph is said to be cubic if all of its vertices are of degree 3, that is,
every vertex has precisely three neighbors in the graph. A simple cycle that traverses
every vertex exactly once is called a Hamilton cycle (Hamilton circuit). A graph is
said to be hamiltonian if it possesses a Hamilton cycle.

Given a graph X we let V (X), E(X), A(X) and AutX be the vertex set, edge set,
arc set, and the automorphism group of X , respectively. For any vertices v, w ∈ V (X),
we let d(v,w) = d(w, v) be the distance between v and w. The diameter of a graph
X is defined by diam(X) = max{d(v,w)|v,w ∈ V (X)}. The automorphism group
AutX is said to be vertex-transitive, edge-transitive, and arc-transitive provided it acts
transitively on the sets of vertices, edges, and arcs of X , respectively. A graph is said
to be vertex-transitive, edge-transitive, and arc-transitive if its automorphism group
is vertex-transitive, edge-transitive, and arc-transitive, respectively. Moreover, a graph
is said to be symmetric if its automorphism group is vertex-transitive, edge-transitive
and arc-transitive. The first result linking vertex and edge-transitivity to arc-transitivity
is due to Tutte [22] who proved that a vertex-transitive and edge-transitive graph of
odd degree is necessarily arc-transitive. Hence every cubic vertex-transitive and edge-
transitive graph is also symmetric. Cubic symmetric graphs have spurred quite a bit of
interest in the mathematical community resulting in extensive research using a variety
of techniques from algebra, combinatorics, and topology [23–28].

In the computer interconnection networks, the diameter of a network based on a
graph is the maximum internode distance; that is, it is the maximum number of links
that must be traversed to send a message to any processor along a shortest path. The
lower the diameter of a network the shorter the time needed to send a message from
one processor to the processor farthest away from it. Therefore the topology of a
network should be a graph with a small diameter. In view of the fact that the number
of connections to a single processor should be as small as possible, we restrict our
attention to computer interconnection networks based on cubic graphs. In particular,
we investigate several cubic symmetric graphs from the Foster census [18,19] with a
small diameter. Hereafter the notation FnA, FnB etc. will refer to the corresponding
graphs in the Foster census of all cubic arc-transitive graphs [18,19] where the symbol
FnA is sometimes conveniently shortened to Fn. In Fig. 1 the graphs F6, F8, F14, F16,
and F20A are given. Figure 2 shows a computer interconnection network based on the
complete graph F4.

123

J Math Chem (2009) 45:372–385 375

Fig. 1 The cubic symmetric graphs

Fig. 2 A computer
interconnection network based
on the F4 graph. The four
processors correspond to the
four vertices of the graph. The
connections between the
processors correspond to the
edges between pairs of graph
vertices

We will consider only the hamiltonian cubic symmetric graphs. (In fact, apart
from the trivial example K2, there are only four known connected vertex-transitive
graphs that do not contain a Hamilton cycle.) All of the considered graphs can be
represented with the LCF code (sometimes called the LCF notation after the authors’
initials), which is a convenient notation devised for representing cubic hamiltonian

123

376 J Math Chem (2009) 45:372–385

Fig. 3 The construction of the complete F6A graph from its LCF code, [3,−3]3. We expand the code to
[3,−3, 3, −3, 3, −3] so that its length equals the graph order. We start with the Hamilton cycle, as shown
in the first diagram. To each of the vertices we then add the number in the LCF code at the position of the
vertex. In the middle diagram, we have connected vertex v0 to its adjacent pair v3 (because the sum of the
number of the first vertex, 0, and the first number in the LCF code, 3, is equal to 3) and vertex v1 to v4
(because the sum of the number of the second vertex, 1, and the second number in the LCF code, −3, is
equal to 4 modulo 6). The last diagram shows the completed graph with all of its edges

graphs [29,30]. The LCF code of a hamiltonian cubic graph relative to one of its
Hamilton cycles (v0, v1, . . . , vn−1, v0) is a list LCF[a0, a1, . . . , an−1] of elements of
i ∈ Zn\{0, 1, n − 1} such that vi is adjacent to vi+ai for every i ∈ Zn (Note that Zn

denotes the set of residues modulo n.) In addition, if there exists a proper divisor k of
n such that ai = ai+rk for all i ∈ Zn and r ∈ {1, 2, . . . , n/k − 1} then the notation is
simplified to LCF[a0, a1, . . . , an−1]n/k .

Let us clarify the LCF code with an example. The F6A graph is specified with the
LCF code LCF[3,−3]3, which is expanded to [3,−3, 3,−3, 3,−3] with six elements,
equal to the graph order. Each of the six vertices, serially numbered v0, v1, v2, v3, v4,
and v5, of the F6A graph is adjacent to the vertex given by the sum (modulo 6) of its
vertex number and the LCF code at the corresponding position: e.g., the first vertex v0
is adjacent to the vertex v0+3 = v3, since the first number in the LCF code is 3. The
second vertex v1 is adjacent to vertex v1−3 = v4, and so on. Or, the expanded code
[3,−3, 3,−3, 3,−3] is added element-wise to the sequential vector [0,1,2,3,4,5] to
yield the sum [3,4,5,0,1,2]. The vertices in corresponding positions of the sequential
vector and the sum are adjacent: 0 and 3, 1 and 4, 2 and 5. The generation of graph
edges from the LCF code is illustrated in Fig. 3.

In Table 1 we give the LCF codes of cubic symmetric graphs that we have consi-
dered.

3 Communication in parallel molecular dynamics simulation

The calculation of MD simulation is inherently serial: the sequence of time steps must
be calculated in consecutive order since the results of the current step are needed to
calculate the proceeding time step [31]. In parallel MD, the calculations in each time
step are parallelized. Every MD step consists of two parts: one is the calculation of
forces and the other is the calculation of new atomic coordinates. Data from one part is
needed for the next: the total forces acting on an atom must be known to calculate the
new coordinates; then, the updated coordinates must be known to calculate the forces

123

J Math Chem (2009) 45:372–385 377

Table 1 The LCF codes of cubic symmetric graphs that have been considered as interconnection networks

Graph Vertices LCF code

F004A 4 LCF[2,−2]2
F006A 6 LCF[3,−3]3
F008A 8 LCF[3,−3]4
F014A 14 LCF[5,−5]7
F016A 16 LCF[5,−5]8
F018A 18 LCF[5, 7,−7, −5,−7, 7]3
F020A 20 LCF[10, 7, 4,−4,−7, 10, −4, 7,−7, 4]2
F020B 20 LCF[−5, 9, 5, −9]5
F024A 24 LCF[5,−9, 7, −5, 9,−7]4
F026A 26 LCF[7,−7]13

F030A 30 LCF[−7, 9, 13,−13,−9, 7]5
F032A 32 LCF[−5, 13,−13, 5]8
F038A 38 LCF[15,−15]19

F040A 40 LCF[15, 9,−9,−15]10

F042A 42 LCF[9,−9]21

F048A 48 LCF[−7, 9, 19, 7, −9,−19]8
F050A 50 LCF[9, 11,−11, 11, −11, 11,−11, 11,−11,−9]5
F054A 54 LCF[−11, 11, 13,−13,−11, 11]9
F056A 56 LCF[11, 13,−13,−11]14

F060A 60 LCF[12,−17,−12, 25, 17,−26,−9, 9, −25, 26]6
F112C 112 LCF[11,−43, 43,−11]28

F126A 126 LCF[−47, 47, 49,−49,−47, 47]21

F152A 152 LCF[19, 21,−21,−19]38

F168A 168 LCF[5,−9, 55, 65, 9,−5, 5, −9,−65,−55, 9, −5]14

F208A 208 LCF[43,−59, 59,−43]52

F224A 224 LCF[−5, 45, 51, 5, −5,−51,−45, 5]28

F234A 234 LCF[41, 43,−43, 43,−43,−41]39

F248A 248 LCF[67, 69,−69,−67]62

F296A 296 LCF[27, 29,−29,−27]74

F304A 304 LCF[−21, 133, −133, 21]76

F312A 312 LCF[5,−9, 79, 89, 9,−5, 5, −9,−89,−79, 9, −5]26

F336C 336 LCF[−163,−9, 103, −55, 9, 163,−163,−9, 55,−103, 9, 163]28

F342A 342 LCF[−29, 29, 31,−31,−29, 29]57

F344A 344 LCF[131, 133, −133,−131]86

F350A 350 LCF[−29, 29, 31,−31, 31,−31, 31, −31,−29, 29]35

F378A 378 LCF[−173, 173, 175,−175,−173, 173]63

F392A 392 LCF[179, 181, −181,−179]98

F416A 416 LCF[−5, 173, 179, 5,−5, −179,−173, 5]52

The leading zeros after the initial F may be omitted: the notation F006A and F6A refer to the same graph

on atoms. In parallel MD simulation, in which the calculations—and the results—are
distributed among processors, the appropriate calculated forces and coordinates must
be transferred among the processors so that the following part of the MD calculation
has the required data.

The calculation of the forces is the most computationally expensive part of an
MD simulation [32]. As a specific case of the general N -body problem, it must
account for the N 2 interactions among the N atoms of the molecular system [33].

123

378 J Math Chem (2009) 45:372–385

Several parallelization methods have been developed for calculating the force in pa-
rallel [32,34–36]. In all of the parallel methods for MD simulation, each processor
calculates a part, N 2/P , of the interactions among atoms; collectively, the sum of
these interaction calculations yields the total forces on the atoms, the same as would
be calculated by a single processor. The calculation of new atomic coordinates is not
as computationally demanding as calculating the forces, but can also be effectively
parallelized: every processor is assigned a disjoint subset of N/P atoms and must
update the coordinates of these atoms. Performing the sum of the forces after the force
calculation, when the results are scattered among the processors, and the broadcast of
the updated atomic coordinates after their calculation form the bulk of the data transfer
in parallel MD.

3.1 Global broadcast

The communication pattern for the global broadcast operation arises from the need
to have updated atomic coordinates on every processor. After the calculation of new
atomic coordinates, the results are scattered among the processors: a processor has the
updated coordinates only for the atoms for which it has calculated the coordinates, i.e.,
the coordinates of the atoms that are assigned to it. Every processor i must therefore
broadcast ci , the updated coordinates for its N/P atoms, to the other P-1 processors.
A routine in the standard parallel library MPI that performs this all-to-all broadcast
is named MPI_allgatherv [37] but for simplicity we shall refer to it as the global
broadcast operation. An example of the broadcast operation is shown in Fig. 4. In the
example from Fig. 4, before the operation every processor has the updated coordinates,
ci , for its subset of N/6 atoms. Upon completion of the operation, every processor must
have the complete set of coordinates {c0, c1, c2, c3, c4, c5} for all N atoms. In the first
step, a processor exchanges its coordinates with all three neighbors; e.g., at the end of
the first step processor 0 would have the data set of coordinates {c0, c1, c3, c5}. In the
second step, a processor i receives from its neighbors i + 1 and i + 3 the coordinates
from their neighbor i +1 (i.e., ci+2 and ci+4) and sends the appropriate coordinates to
its two neighbors. (Processor numbers are taken as modulo 6.) For example, processor
0 receives coordinates c2 from processor 1 and c4 from processor 3 and sends c1 to
processor 5 and c1 to processor 3. After this second step, the global broadcast operation
is complete and all of the processors have the complete data set of coordinates for all
N atoms.

3.2 Global sum

The communication pattern for the global sum operation arises from the need of a
processor to have, after the force calculation, the total force acting on the N/P atoms
that are assigned to it, so that it can then calculate the new coordinates for these atoms.
After the parallel force calculation, every processor has as a result partial forces acting
on all N atoms. Let f i

n denote the partial force calculated by processor i acting on
atoms assigned to processor n. After the force calculation, each processor i has a set of
such partial forces { f i

0 , f i
1 , . . . , f i

P }. To be able to calculate new atomic coordinates,

123

J Math Chem (2009) 45:372–385 379

Fig. 4 The global broadcast operation on the F6A graph. The three tables on the right show the data that the
six processors numbered 0–5 have before the start of the global broadcast operation, between the two steps,
and after the completed operation. The diagrams on the left indicate the data transfers that occur at the two
steps of the global broadcast operation, with arrows from the sender to the receiver and the transferred data
written by the arrow head. Before the operation, every processor i , 0 ≤ i ≤ 5 has the updated coordinates
of the atoms that are assigned to it, ci . After the operation, every processor has the updated coordinates of
all of the N atoms, the complete set {c0, c1, c2, c3, c4, c5}

123

380 J Math Chem (2009) 45:372–385

it must have the total force Fi acting on its assigned atoms, which is the sum of
the partial forces Fi = { f 0

i + f 1
i + · · · + f P

i } acting on its assigned atoms; these
partial forces are scattered among the other processors. The standard MPI library
routine MPI_reduce_scatter performs the a sum-and-distribute operation that we call
the global sum [16]. The global sum operation, which is the opposite from that of the
global broadcast operation, is explained in Fig. 5. In the example with six processors,
before the sum operation, a processor i has the partial forces { f i

0 , f i
1 , f i

2 , f i
3 , f i

4 , f i
5 }

for all N atoms. In the first step, a processor i sends its partial forces f i
i+2 to its

neighbor i + 1 and f i
i+4 to its neighbor i + 3. Processor 0, e.g., would now have

the partial sum { f 0
0 , f 0

1 + f 3
1 + f 5

1 , f 0
2 , f 0

3 , f 0
4 , f 0

5 }. In the next step, a processor i
sends the partial sum f i

i+3 to its neighbor i + 3, f i
i−1 to i − 1, and the partial sum

f i
i+1 + f i−1

i+1 + f i+3
i+1 to i + 1. At the conclusion of this last step, every processor i has

Fi, the total sum of forces for all of the N/P atoms that are assigned to it. They can
all now calculate the new atomic positions.

Both the global broadcast and global sum operations are implemented as a se-
ries of individual message exchanges between two processors, as illustrated in Figs. 4
and 5. These messages contain either the coordinate data ci or the partial forces f i

n . The
processor-to-processor message exchanges can occur in parallel, since the connections
between processors are physically separate connections. Also, full-duplex communi-
cation is assumed, so that two processors can concurrently send and receive. To achieve
the lowest communication time, the order in which processors exchange which data
must be tailored to the topology connecting the processors [38].

After introducing the global broadcast and global sum operations we can develop an
algorithm, shown in Fig. 6, for scheduling individual data transfers among processors.
For any computer interconnection network based on hamiltonian cubic symmetric
graphs, the algorithm prepares a schedule that the processors follow to complete a
global broadcast or global sum operation.

The input to the algorithm is a the LCF code of the graph of the computer network.
The output of the algorithm is the broadcast schedule for the graph. It is a sequence of
messages exchanges to be performed, including the step of the operation, the source
and destination processors, and the data to be transferred. The data transfers for the
global broadcast and global sum operations shown in examples on Figs. 4 and 5 were
generated by this algorithm. The same, yet reversed, schedule is used for the sum
operation. The steps are taken in descending order and the sending and receiving
processors are reversed, while the data to be transferred refers to the partial forces
instead of the coordinates. The processor sums the receiving forces to the partial sums
it already has.

4 Analysis of communication requirements

We have used the algorithm from Fig. 6 to calculate the communication requirements
of the global broadcast and global sum operations. The modeled time is governed
by two variables: the latency, which is the delay between the time when the sending
processor begins to send a message and the time when the receiving processor begins to

123

J Math Chem (2009) 45:372–385 381

Fig. 5 The global sum operation on the F6A graph. The three tables on the right show the data that the
six processors numbered 0–5 have before the global sum operation, between the two steps, and after the
completed operation. The diagrams on the left indicate the data transfers that occur at the two steps of
the global sum operation, with arrows from the sender to the receiver and the transferred data written by
the arrow head. Before the operation, every processor i , 0 ≤ i ≤ 5 has partial forces for all N atoms,
{ f i

0 , f i
1 , f i

2 , f i
3 , f i

4 , f i
5 }. After the operation, every processor has the sum of these partial forces, Fi =

{ f 0
i + f 1

i + f 2
i + f 3

i + f 4
i + f 5

i } for the N/P atoms assigned to it, along with residual partial forces for
atoms that are not assigned to it; these residual partial forces are unneeded and eventually discarded

receive it; and the connection bandwidth, which is the speed at which data is transferred
between the sender and receiver. The time to transfer a single message is therefore
the latency + message si ze × bandwidth. For the global broadcast or global sum
operations, the total time is steps × latency +bandwidth ×data volume, where the

123

382 J Math Chem (2009) 45:372–385

Fig. 6 An algorithm for creating a broadcast schedule among vertices (processors). The input is the graph’s
LCF code and the output is a broadcast schedule that specifies which data a processors sends and receives
at each time step

steps is the number of communication time steps needed for the operation and data
volume is the sum over all of the steps of the maximal message size exchanged by any
two processors.

The modeled times according to the algorithm are gathered in Table 2. For each
graph, identified by the Graph Name, we list the number of processors—corresponding
to the graph order—in the interconnection network, the number of communication time
steps, which is equal to the graph diameter, and the data volume.

The communication time steps does not increase monotonically with an increasing
graph order, nor does the data volume. Therefore there are a number of networks that,
while connecting a larger number of processors, have a relatively low time required
for communication. Among the larger networks, the ones based on graphs F304A and
F336C have such low requirements compared to other similarly-sized networks.

The F060A graph, which is comparable in size to a 6-dimensional hypercube of
order 64, has fewer communication time steps, 5 compared to the hypercube’s 6 [16].
Also, the data transfer time is 25 compared to the hypercube’s 63.

123

J Math Chem (2009) 45:372–385 383

Table 2 Communication
requirements for a number of
interconnection networks

For each network, the graph
name, the number of
communication time steps, and
data volume is given

Graph name Number of Communication Data volume
processors steps

F004A 4 1 1
F006A 6 2 3
F008A 8 3 4
F014A 14 3 7
F016A 16 4 8
F018A 18 4 11
F020A 20 5 8
F020B 20 4 13
F024A 24 5 17
F026A 26 5 13
F030A 30 4 15
F032A 32 5 16
F038A 38 5 19
F040A 40 6 20
F042A 42 6 21
F048A 48 6 34
F050A 50 7 25
F054A 54 6 27
F056A 56 7 28
F060A 60 5 25
F112C 112 7 56
F126A 126 10 63
F152A 152 11 76
F168A 168 12 84
F208A 208 9 104
F224A 224 13 112
F234A 234 14 117
F248A 248 15 124
F296A 296 15 148
F304A 304 11 152
F312A 312 16 156
F336C 336 12 168
F342A 342 16 171
F344A 344 17 172
F350A 350 17 175
F378A 378 18 189
F392A 392 17 196
F416A 416 19 208

5 Conclusions

We have presented a class of computer interconnection networks based on hamiltonian
cubic symmetric graphs. The cubic symmetric graphs have many desirable properties
for use as interconnection networks since they have a low degree and vertex- and
edge-transitivity. We have developed an algorithm for scheduling the data transfers
for the global broadcast and global sum operations, which are needed for parallel
MD simulation, on networks derived from any of these graphs. We have shown that
the computer interconnection networks based on cubic symmetric graphs are very
scalable, enabling MD simulations to be run on parallel computers with a large number
of processors.

123

384 J Math Chem (2009) 45:372–385

Acknowledgements The authors acknowledge the financial support from the state budget by the Slovenian
Research Agency under Grants Nos. P1-0285 (K.K. and D.M.) and P1-0002 (U.B. and D.J.).

References

1. T. Sterling, D.J. Becker, D. Savarese, Beowulf: a parallel workstation for scientific computation.
In Proceedings of the 15th International Conference on Parallel Processing (ICPP), vol. 1 (1995),
pp. 11–14

2. J.-C. Bermond, C. Delorme, J.-J. Quisquater, Strategies for interconnection networks: some methods
from graph theory. J. Parallel Distrib. Comput. 3, 433–449 (1985)

3. S.M. Figueira, V.J. Reddi, Topology-based hypercube structures for global communication in heteroge-
neous networks. In Proceedings of the 11th International Euro-Par Conference, August 30–September
2. Lecture Notes in Computer Science, vol. 3648 (Springer, Berlin, 2005)

4. R. Trobec, Two-dimensional regular d-meshes. Parallel Comput. 26, 1945–1953 (2000)
5. S. Horiguchi, T. Ooki, Hierarchical 3D-Torus interconnection network. In Proceedings of the IEEE

International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’2000) (IEEE
CS Press, Richardson, TX, 2000)

6. B. Parhami, D.M. Kwai, Comparing four classes of torus-based parallel architectures: network para-
meters and communication performance. Math. Comput. Model. 40, 701–720 (2004)

7. M. Hodošček, U. Borštnik, D. Janežič, CROW for large scale macromolecular simulations. Cell. Mol.
Biol. Lett. 7, 118–119 (2002)

8. V. Kutalek, V. Dvorak, On complexity of collective communications on a fat cube topology. J. Univ.
Comput. Sci. 11, 944–961 (2005)

9. F. Comellas, M. Mitjana, J.G. Peters, Broadcasting in small-world communication networks. Proc.
Inform. 13, 73–85 (2002)

10. T. Dobravec, B. Robič, J. Žerovnik, Permutation routing in double-loop networks: design and empirical
evaluation. J. Syst. Arch. 48, 387–402 (2003)

11. D.W. Heermann, A.N. Burkitt, Parallel Algorithms in Computational Science (Springer-Verlag, Berlin,
1991)

12. J.C. Phillips, G. Zheng, S. Kumar, L.V. Kalé, NAMD: biomolecular simulation on thousands of pro-
cessors. In Proceedings of SC 2002, Baltimore, MD (2002)

13. R. Trobec, M. Šterk, M. Praprotnik, D. Janežič, Parallel programming library for molecular dynamics
simulations. Int. J. Quant. Chem. 95, 530–536 (2004)

14. U. Borštnik, M. Hodošček, D. Janežič, Fast parallel molecular simulations. Croat. Chem. Acta 78,
211–216 (2005)

15. H. Lu, S. Dwarkadas, A.L. Cox, W. Zwaenepoel, Message passing versus distributed shared memory
on networks of workstations. In Proceedings of the 1995 ACM/IEEE Supercomputing Conference,
San Diego, CA, USA (1995), p. 37

16. U. Borštnik, M. Hodošček, D. Janežič, Improving the performance of molecular dynamics simulations
on parallel clusters. J. Chem. Inf. Comput. Sci. 44, 359–364 (2004)

17. B. Robič, B. Vilfan, Improved schemes for mapping arbitrary algorithms onto processor meshes.
Parallel Comput. 62, 308–318 (1995)

18. I.Z. Bouwer, W.W. Chernoff, B. Monson, Z. Star, The Foster Census (Winnipeg, 1988)
19. M.D.E. Conder, P. Dobcsanyi, Trivalent symmetric graphs on up to 768 vertices. J. Combin. Math.

Combin. Comput. 40, 41–63 (2002)
20. R. Frucht, A canonical representation of trivalent hamiltonian graphs. J. Graph Theory 1, 45–60 (1977)
21. N. Biggs, Algebraic Graph Theory (Cambridge University Press, London, 1974)
22. W.T. Tutte, Connectivity in Graphs (University of Toronto Press, Toronto, 1966)
23. Y.Q. Feng, J.H. Kwak, Cubic symmetric graphs of order twice an odd prime-power. J. Aust. Math.

Soc. 81, 153–164 (2006)
24. Y.Q. Feng, J.H. Kwak, Classifying cubic symmetric graphs of order 8p or 8p2. Eur. J. Combin. 26,

1033–1052 (2005)
25. D. Marušič, T. Pisanski, Symmetries of hexagonal molecular graphs on the torus. Croat. Chem. Acta

73, 969–981 (2000)
26. K. Kutnar, A. Malnič, D. Marušič, Chirality of toroidal molecular graphs. J. Chem. Inf. Model. 45,

1527–1535 (2005)

123

J Math Chem (2009) 45:372–385 385

27. A. Malnič, R. Nedela, M. Škoviera, Graph automorphisms by voltage assignments. Eur. J. Combin.
21, 927–947 (2000)

28. A. Malnič, Action graphs and coverings. Discrete Math. 244, 299–322 (2002)
29. J. Lederberg, DENDRAL-64: a system for computer construction, enumeration and notation of organic

molecules as tree structures and cyclic graphs. Part II. Topology of cyclic graphs. In Interim Report to
the National Aeronautics and Space Administration. Grant NsG (1965)

30. H.S.M. Coxeter, R. Frucht, D.L. Powers, Zero-Symmetric Graphs: Trivalent Graphical Regular
Representations of Groups (Academic Press, New York, 1981)

31. A.R. Leach, Molecular Modeling: Principles and Applications (Addison Wesley Longman Limited,
Essex, 1996)

32. S.J. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Chem. Phys. 117, 1–19
(1995)

33. M. Snir, A note on n-body computations with cutoffs. Theor. Comput. Syst. 37, 295–318 (2004)
34. S.J. Plimpton, B.A. Hendrickson, A new parallel method for molecular-dynamics simulation of

macromolecular systems. J. Comput. Chem. 17, 326–337 (1996)
35. B.R. Brooks, M. Hodošček, Parallelization of CHARMm for MIMD machines. Chem. Des. Autom.

News 7, 16–22 (1992)
36. R. Murty, D. Okunbor, Efficient parallel algorithms for molecular dynamics simulations. Parallel

Comput. 25, 217–230 (1999)
37. M. Snir, S. Otto, S. Huss-Lederman, D. Walker, J. Dongarra, MPI: The Complete Reference (The

Massachusetts Institute of Technology Press, Cambridge, 1996)
38. T. Dobravec, J. Žerovnik, B. Robič, An optimal message routing algorithm for circulant networks.

J. Syst. Arch. 52, 298–306 (2006)

123

	Interconnection networks for parallel molecular dynamics simulation based on hamiltonian cubic symmetric topology
	Abstract
	1 Introductory remarks
	2 Cubic symmetric graphs
	3 Communication in parallel molecular dynamics simulation
	3.1 Global broadcast
	3.2 Global sum

	4 Analysis of communication requirements
	5 Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

